Tablas de frecuencia
Distribución de frecuencias
La distribución de frecuencias o tabla de frecuencias es una ordenación en forma de tabla de los datos estadísticos, asignando a cada dato su frecuencia correspondiente.
Tipos de frecuencias
Frecuencia absoluta
La frecuencia absoluta es el número de veces que aparece un determinado valor en un estudio estadístico.
Se representa por fi.
La suma de las frecuencias absolutas es igual al número total de datos, que se representa por N.
igualdad
Para indicar resumidamente estas sumas se utiliza la letra griega Σ (sigma mayúscula) que se lee suma o sumatoria.
igualdad
Frecuencia relativa
La frecuencia relativa es el cociente entre la frecuencia absoluta de un determinado valor y el número total de datos.
Se puede expresar en tantos por ciento y se representa por ni.
frecuencia relativa
La suma de las frecuencias relativas es igual a N1.
Frecuencia acumulada
La frecuencia acumulada es la suma de las frecuencias absolutas de todos los valores inferiores o iguales al valor considerado.
Se representa por Fi.
Frecuencia relativa acumulada
La frecuencia relativa acumulada es el cociente entre la frecuencia acumulada de un determinado valor y el número total de datos. Se puede expresar en tantos por ciento.
Ejemplo:
Durante el mes de julio, en una ciudad se han registrado las siguientes temperaturas máximas:
32, 31, 28, 29, 33, 32, 31, 30, 31, 31, 27, 28, 29, 30, 32, 31, 31, 30, 30, 29, 29, 30, 30, 31, 30, 31, 34, 33, 33, 29, 29.
En la primera columna de la tabla colocamos la variable ordenada de menor a mayor, en la segunda hacemos el recuento y en la tercera anotamos la frecuencia absoluta.
xi | Recuento | fi | Fi | ni | Ni |
27 | I | 1 | 1 | 0.032 | 0.032 |
28 | II | 2 | 3 | 0.065 | 0.097 |
29 | | 6 | 9 | 0.194 | 0.290 |
30 | | 7 | 16 | 0.226 | 0.516 |
31 | | 8 | 24 | 0.258 | 0.774 |
32 | III | 3 | 27 | 0.097 | 0.871 |
33 | III | 3 | 30 | 0.097 | 0.968 |
34 | I | 1 | 31 | 0.032 | 1 |
| | 31 | | 1 | |
Este tipo de tablas de frecuencias se utiliza con variables discretas.
Distribución de frecuencias agrupadas
La distribución de frecuencias agrupadas o tabla con datos agrupados se emplea si las variables toman un número grande de valores o la variable es continua.
Se agrupan los valores en intervalos que tengan la misma amplitud denominados clases. A cada clase se le asigna su frecuencia correspondiente.
Límites de la clase
Cada clase está delimitada por el límite inferior de la clase y el límite superior de la clase.
Amplitud de la clase
La amplitud de la clase es la diferencia entre el límite superior e inferior de la clase.
Marca de clase
La marca de clase es el punto medio de cada intervalo y es el valor que representa a todo el intervalo para el cálculo de algunos parámetros.
Construcción de una tabla de datos agrupados
3, 15, 24, 28, 33, 35, 38, 42, 43, 38, 36, 34, 29, 25, 17, 7, 34, 36, 39, 44, 31, 26, 20, 11, 13, 22, 27, 47, 39, 37, 34, 32, 35, 28, 38, 41, 48, 15, 32, 13.
1º Se localizan los valores menor y mayor de la distribución. En este caso son 3 y 48.
2º Se restan y se busca un número entero un poco mayor que la diferencia y que sea divisible por el número de intervalos queramos establecer.
Es conveniente que el número de intervalos oscile entre 6 y 15.
En este caso, 48 - 3 = 45, incrementamos el número hasta 50 : 5 = 10 intervalos.
Se forman los intervalos teniendo presente que el límite inferior de una clase pertenece al intervalo, pero el límite superior no pertenece intervalo, se cuenta en el siguiente intervalo.
| ci | fi | Fi | ni | Ni |
[0, 5) | 2.5 | 1 | 1 | 0.025 | 0.025 |
[5, 10) | 7.5 | 1 | 2 | 0.025 | 0.050 |
[10, 15) | 12.5 | 3 | 5 | 0.075 | 0.125 |
[15, 20) | 17.5 | 3 | 8 | 0.075 | 0.200 |
[20, 25) | 22.5 | 3 | 11 | 0.075 | 0.275 |
[25, 30) | 27.5 | 6 | 17 | 0.150 | 0.425 |
[30, 35) | 32.5 | 7 | 24 | 0.175 | 0.600 |
[35, 40) | 37.5 | 10 | 34 | 0.250 | 0.850 |
[40, 45) | 42.5 | 4 | 38 | 0.100 | 0.950 |
[45, 50) | 47.5 | 2 | 40 | 0.050 | 1 |
| | 40 | | 1 | |
40 1
Diagrama de barras y polígonos de frecuencias
Diagrama de barras
Un diagrama de barras se utiliza para de presentar datos cualitativos o datos cuantitativos de tipo discreto.
Se representan sobre unos ejes de coordenadas, en el eje de abscisas se colocan los valores de la variable, y sobre el eje de ordenadas las frecuencias absolutas o relativas o acumuladas.
Los datos se representan mediante barras de una altura proporcional a la frecuencia.
Ejemplo:
Un estudio hecho al conjunto de los 20 alumnos de una clase para determinar su grupo sanguíneo ha dado el siguiente resultado:
Grupo sanguíneo fi
A 6
B 4
AB 1
0 9
20
Diagrama de barras
Polígonos de frecuencia
Un polígono de frecuencias se forma uniendo los extremos de las barras mediante segmentos.
También se puede realizar trazando los puntos que representan las frecuencias y uniéndolos mediante segmentos.
Ejemplo:
Las temperaturas en un día de otoño de una ciudad han sufrido las siguientes variaciones:
Hora Temperatura
6 7º
9 12°
12 14°
15 11°
18 12°
21 10°
24 8°
dibujo
Diagrama de sectores
Un diagrama de sectores se puede utilizar para todo tipo de variables, pero se usa frecuentemente para las variables cualitativas.
Los datos se representan en un círculo, de modo que el ángulo de cada sector es proporcional a la frecuencia absoluta correspondiente.
El diagrama circular se construye con la ayuda de un transportador de ángulos.
Ejemplos
En una clase de 30 alumnos, 12 juegan a baloncesto, 3 practican la natación, 9 juegan al fútbol y el resto no practica ningún deporte.
Alumnos Ángulo
Baloncesto 12 144°
Natación 3 36°
Fútbol 9 108°
Sin deporte 6 72°
Total 30 360°
Histograma
Un histograma es una representación gráfica de una variable en forma de barras.
Se utilizan para variables continuas o para variables discretas, con un gran número de datos, y que se han agrupado en clases.
En el eje abscisas se construyen unos rectángulos que tienen por base la amplitud del intervalo, y por altura, la frecuencia absoluta de cada intervalo.
La superficie de cada barra es proporcional a la frecuencia de los valores representados.
Polígono de frecuencia
Para construir el polígono de frecuencia se toma la marca de clase que coincide con el punto medio de cada rectángulo.
Ejemplo:
El peso de 65 personas adultas viene dado por la siguiente
| ci | fi | Fi |
[50, 60) | 55 | 8 | 8 |
[60, 70) | 65 | 10 | 18 |
[70, 80) | 75 | 16 | 34 |
[80, 90) | 85 | 14 | 48 |
[90, 100) | 95 | 10 | 58 |
[100, 110) | 105 | 5 | 63 |
[110, 120) | 115 | 2 | 65 |
| | 65 | |
Parámetros estadísticos
Un parámetro estadístico es un número que se obtiene a partir de los datos de una distribución estadística.
Los parámetros estadísticos sirven para sintetizar la información dada por una tabla o por una gráfica.
Tipos de parámetros estadísticos
Hay tres tipos parámetros estadísticos:
De centralización.
De posición
De dispersión.
Medidas de centralización
Nos indican en torno a qué valor (centro) se distribuyen los datos.
La medidas de centralización son:
Media aritmética
La media es el valor promedio de la distribución.
Mediana
La mediana es la puntación de la escala que separa la mitad superior de la distribución y la inferior, es decir divide la serie de datos en dos partes iguales.
Moda
La moda es el valor que más se repite en una distribución.
Medidas de posición
Las medidas de posición dividen un conjunto de datos en grupos con el mismo número de individuos.
Para calcular las medidas de posición es necesario que los datos estén ordenados de menor a mayor.
La medidas de posición son:
Cuartiles
Los cuartiles dividen la serie de datos en cuatro partes iguales.
Deciles
Los deciles dividen la serie de datos en diez partes iguales.
Percentiles
Los percentiles dividen la serie de datos en cien partes iguales.
Medidas de dispersión
Las medidas de dispersión nos informan sobre cuanto se alejan del centro los valores de la distribución.
Las medidas de dispersión son:
Rango o recorrido
El rango es la diferencia entre el mayor y el menor de los datos de una distribución estadística.
Desviación media
La desviación media es la media aritmética de los valores absolutos de las desviaciones respecto a la media.
Varianza
La varianza es la media aritmética del cuadrado de las desviaciones respecto a la media.
Desviación típica
La desviación típica es la raíz cuadrada de la varianza.